Subject Area: Advanced Methods in Biotechnology and Biodiversity
Subject: Advanced Molecular Cytogenetics
Level: III-PhD
Year: I-IV
Semester: 1-2
Speciality: N/A
Status: Facultative
ECTS: 3
Department: Plant Anatomy and Cytology
Cooperating Department: N/A

Form of teaching (Number of hours; Form of assessment: Exam or Credit)

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Seminars/Conversatoria</th>
<th>Practicals</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>26</td>
<td>3</td>
<td>30</td>
</tr>
</tbody>
</table>

Staff:

SUBJECT COORDINATOR: Prof. Robert Hasterok Ph.D.
LECTURE/CONVERSATORIA: Prof. Robert Hasterok Ph.D.

Contents:

LECTURES:
Application of various molecular cytogenetic methods (FISH, GFP, CGH) in plant breeding and medicine.

PRACTICALS:
During the practicals the following molecular cytogenetics techniques will be introduced to the students:

- fluorescence *in situ* hybridisation (FISH) with various repetitive DNA (rDNA, centromeric, telomeric, retrotransposon etc.) sequences as a tool to study plant nuclear genome structure.
- genomic *in situ* hybridisation (GISH) as a tool to study phylogeny of natural and resynthesized allopolyploids.
- FISH with BAC clones as a tool to obtain chromosome-specific markers and study fine scale evolution of nuclear genomes.
- flow and imaging cytometry.
- digital image acquisition and analysis, interpretation of results and their preparation for publication in research paper.

Methods and forms of teaching:
Lectures illustrated by computer presentations and video projector.

Requirements: Knowledge of cytogenetics and molecular biology at the basic level.

Literature (maximum 5 sources, all in English):

Remarks (if necessary): the practicals will require one week. The maximal number of students in the practical group is six.