Subject Area: Advanced Methods in Biotechnology and Biodiversity

Subject: Advanced statistical methods in natural sciences

Level: PhD
Year: I-IV
Semester: 1-2
Speciality: N/A
Status: Facultative
ECTS: 3

Department(s): Ecology

Cooperating Department:

Form of teaching (Number of hours): Form of assessment: Exam or Credit

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Conversatoria</th>
<th>Practicals</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Staff:

SUBJECT COORDINATOR: Associate Professor Piotr Skubała PhD
LECTURERS: Associate Professor Piotr Skubała PhD; Anna Orczewska PhD; Izabella Franiel PhD

Contents:

PRACTICALS:

The aim of the module is to broaden the students' knowledge on advanced methods in statistics applied in natural sciences. Students learn different methods of multivariate analysis, especially ordination, classification (cluster analysis) and discriminant analysis. Indirect gradient analyses, e.g. Polar ordination (PO), Principal Coordinates Analysis (PCoA), Nonmetric Multidimensional Scaling (NMDS), Principal Components Analysis (PCA), Correspondence Analysis (CA), Detrended Correspondence Analysis (DCA) and direct gradient analyses, e.g. Canonical Correspondence Analysis (CCA), Detrended Canonical Correspondence Analysis (DCCA), Redundancy Analysis (RDA) are discussed and practiced on many examples. As regards cluster analysis, hierarchical agglomerative methods is mainly practiced. Practicals are taught using the following statistical programs: CANOCO, Statistica, Multivariate Variate Statistical Package (MVSP) and PAST (PAleontological STatistics).

Methods and forms of teaching: short computer presentations of a selected theoretical problem, exercises using various computer programs,

Requirements:

General basic knowledge in statistics and biology

Literature:

Remarks (if necessary):